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TANDEM MIRROR REACTOR¥*
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Summary

We have developed a computer code for
assessing the performance of new variations on
the thermal barrier idea for tandem mirror
reactors (ITMR's). The code solves the particle
and energy balance equations simultaneously for
each species of particles in each portion of the
machine. The code is thus able to detemine the
neutral beam and ECRH injection powers that are
required to sustain an equilibrium situation,
and, from these, to determine the machine's Q
value. This paper focuses on the methodology
and numerical algorithms used in accomplishing
this solution. We plan to use this code to
compare the A-cell barrier TMR with axisymmetric
T™R's.

Introduction

This paper describes a computer code
developed at the Lawrence Livermore National
Laboratory (LLNL) to assess the performance of
two new tandem mirror fusion reactor (TMR)
concepts. Both of these new concepts are
variations on the thermal barrier idea invented
by Baldwin, Logan, and Fowler in April of
1979.1 as originally proposed, the idea
called for a potential depression to be created
between the central cell and the plug of a
tandem mirror. Such a depression could be
obtained by decreasing the magnetic field in
this region, and maintained by pumping out the
ions that would tend to collisionally trap in
the potential depression. This depression
reduced the thermal contact between passing
central-cell electrons and potential-trapped
plug electrons. Because of this reduced thermal
contact, it became possible to dramatically
increase the plug electron temperature, and
hence the plug potential, by modest amounts of
electron-cyclotron resonant heating (ECRH) in
the plug. This original idea became known as
the inside-barrier concept, and a computer code
for assessing the performance of tandem mirror
reactors with inside thermal barriers was
developed in November of 1979.2

#*Work performed under the auspices of the U.S.
Department of Energy by the Lawrence Livermore
National Laboratory under contract number
W-7405-ENG-48.

Though the inside-barrier concept remains
in strong contention and has been actively
pursued by the University of Wisconsgin,
Livermore, for a number of reasons,” decided
to examine another thermal-barrier configuration,
called the A-cell barrier. 1In addition,
Livermore is investigating a novel TMR concept
called the axisymmetric cusp, first described by
Logan in November, 1979.%4 This paper outlines
the physics modeling from LLNL's parametric code
for A-cell and axisymmetric-cusp tandem mirror
reactors. A detailed description of all the
equations in the model and the numerical methods
used to solve them is given in Ref. 5.

Qualitative Description of A-Cell Barriers

The A-cell barrier incorporates a
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neutral-beam—injected yin-yang plug, in which
the potential is slightly raised between the
central cell and the barrier region. On the
outboard side of this plug there is a C-coil.
The barrier region lies in the gap between the
plug's outboard mirror and the C-coil.

The magnetic field strength, plasma
density, and plasma-potential profiles are
depicted in Fig. 1. Note that off-minimum
injection of ions in the barrier, coupled with
ion pumping at the barrier minimum, creates a
distribution of sloshing ions with density peaks
at either side of the barrier minimum. ECRH
heating at the outboard peak (point A) produces
the machine's highest potential maximum, which
ultimately confines the central-cell ions that
pass through the yin-yang plug. This can be
seen in the typical velocity-space diagram for
central-cell ionsg, pictured in Fig. 2. The

<

lons trapped by inboard
PP
plug mirror.

Loss
Region

—» v,

lons trapped by potential
at point A.

lons trapped by plug potential.

Figure 2 Central Cell Ion Velocity Space

electrons see this point as a potential well,
and those electrons that lie within a certain
ellipsoidal region of velocity space at point A
(Fig. 3) are potentially trapped there, and are
referred to as "warm-electrons." Because the
ECRH heats electrons in the perpendicular
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Figure 3 Point A Electron Velocity Space

direction in velocity space, it tends to not
only raise the warm-electron temperature, but
also to convect them out of the ellipsoidal
well. Both of these effects tend to untrap the
warm-electrons from the well at point A, and
this is why the potential there rises.

Figure 4 shows the velocity-space diagram
for electrons at the barrier minimum (point B).
ECRH is also applied here because, by convecting
electrons in the perpendicular direction in
velocity space, it tends to trap them in a
mirror well at high energy. These high-energy,
mirror-trapped electrons are referred to as
hot-electrons, and the effect of maintaining
them there is to depress the potential at point
B~-almost to ground.
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Figure 4 Point B Electron Velocity Space

The axisymmetric TMR, as it was originally
proposed,” was to work in much the same way as
the A-cell barrier TMR; field lines from the
central cell were to pass through a plug, in
which the potential was slightly raised, into a
barrier region. It was later decided not to use
a plug in this configuration. In the A-cell
barrier configuration, the plug is necessary to
provide good curvature for MHD stability; the
axisymmetric configuration, however, has good
curvature in other places. Thus, in the
axisymmetric-TMR physics model the central cell
is adjacent to the barrier region.

Outline of A-Cell Barrier Physics

The code's treatment of the central-cell
physics is nearly identical to that of the
inside-barrier code,2 with one important
addition: the code divides the central cell
into concentric flux tubes of equal thickness,
and uses magnetic flux conservation to map these
flux tubes into the plug and barrier regions.
Although the code is not truly one-dimensional
in that it does not treat radial diffusion



processes, it does allow the specification of
radial beta profiles in the central cell, plug,
and barrier (point B) regions. Given these, it
solves all subsequent equations, including the
particle and energy balance equatioms,
separately along each flux tube.

The Logan—-Rensink plug model,6 coupled
with the plug beta equation and plug ion energy
balance, is used to determine a self-consistent
solution for the plug potential rise AQ,.,
the plug density , and the plug ion confine-
ment (n7), along each consecutive flux tube.

To proceed, the central-cell potential Qg
and the barrier (point A) potential rise Q)
are guessed. Later, we shall use the central-
cell electron and ion particle balances,
respectively, to adjust these guesses; this
computational structure will be referred to as
the "outer loop."

Given () and ()., we then guess the
fraction Fe. of electrons at point B that are
cold (passing). Later, we shall use the
hot-electron particle balance to adjust this
guess; this computational structure will be
referred to as the "middle loop."

Next we guess the barrier potential
depression . We shall now use the
quasineutrality condition at point B to adjust
this guess; this computational structure will be
referred to as the "first inner loop." Given
Py, the passing-ion density at B is modeled by
the following (approximate) mapping equation:

T 1/2
=n 1 (__c _ ’ )
ip,pass Rib WQ% + Tc
where njp pass is the passing-ion density in
the plug lobtained from the plug model), Rjy
is an effective barrier mirror ratio depending
upon the plug and barrier vacuum fields as well
as 8Q,. and T., and T, is the central-cell
ion temperature.

nib,pass

Next, the following two quantities are
input (possibly functions of radius):

- nib,pass * nib,trap (2a)
8ip = n,
ib,pass
and
+ n.
G.. = nib,pass * nibltrap n1b, slosh , (2b)
ib ™= nib,pass
so that
1<gip<Gjbs (2¢)

and where njy,, trap i8 the density of ions that
are potential-trapped at barrier point B, and
Nib,glosh is the density of sloshing iomns at
barrier point B. Thus, since we know njp,pags:

nib,trap = (8ib = 1) Bib,pass (3a)
and

Bib,slosh = (Gib = Bib) Dib,passs (3b)
80 the total ion density at point B is

nip = Cib Mib,pass - (3¢)

Now, the cold (passing) electron density at
point B is given by the mapping equation:

_<9_t;) ( Qe *A@EC)
exp \T - exp T

ec ec
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neb,cold = “ep

T
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where n., is the plug electron density
(ohtaineg from the plug model), and Te.

is the central-cell electron temperature.
The hot~electron density at barrier point B
is then given by:

1 - Fec
= —_ o »
%eb,hot ~ Meb,cold\ F (58)
ec
80 the total electron density at point B is:
Degp = neb,cold/Fec 3 (5b)

these two equations follow directly from the
definition of Fg.. Combining Eq. (1), (3c¢),
(4), and (5b), the quasineutrality condition,
nj} = Ngp, may be written:

F G, [n. T 1/2
@O =-T In ec ib ip,pass c
b ec Rib nep ngg + Tc

+ A +A
[1 - exp (_ 9e___®p_c_)] + exp (- 99__._@.?2) 6)

T T
ec ec

This can be solved by a fixed-point iteration:
that is, Eq. (6) may be used to obtain a better
estimate of Py, and the first inner loop is
repeated with this new estimate until
convergence is obtained. Once we have @, the
potential drop from point A to point B, 6Q,,

is given by:

50y =Dp + O - APy . &)

Next, we guess the value of beta at point
A, By. We shall now use the warm electron
particle balance to adjust this guess; this
computational structure will be referred to as
the "second inner loop." Given B, the
beta-reduced magnetic field at point A is:



1/2

Bpla,a = Bvac,a (I_Ba) : (8)
We may now write the beta equation at point A:
T
(nib,pass * nib,trap) Rib * nec,b Tec
8 2 9)
+n E la,b = Byac,b .
ib,slosh Eing,a g&-ﬂ‘: * Mep not 08 Egp® (_27:)_ fb

The first term on the left is the pressure
contribution from both passing and trapped ions
(this is reduced by the factor Rjj since we

are interested only in the perpendicular
pressure). The second term is the cold-electron
pressure, the third term is the sloshing-ion
perpendicular pressure, and the fourth term is
the hot-electron perpendicular pressure. In the
fourth term, Eoy is the mean hot-electron
energy, and the factor of 0.8 is used instead of
2/3 because, being mirror-trapped, most of the
hot-electron pressure is perpendicular. We can
solve Eq. (9) for Egp, since we know

everything else.

Next, the cold electrons, hot electroms,

and sloshing ions are mapped from point B to
point A by the following (approximate) relations:

B T 1/2
n =n “pla,a ec ’
ea,cold eb,cold Bpla,b WéQL + T, (10)

Buac,m ~ Bola,a 0.2 Eeh /2,
Mea,hot ~ "eb, hot (gvac,n‘b - Eph,b) (G.ZEeh + 80 (11)
and
n =n, (Bpla,a>x (Einj,a * 5®a) 1/2
ia,slosh ib,slosh Bpla,b Einj,a 212)
respectively. 1In Eq. (11), Bysc,mb is the

vacuum field at the barrier mirror (see Fig. 1).
Also, the factor 0.2 in front of Egp is meant

to give the parallel-energy component. In Eq.
(12), x is an exponent chosen to model the
charge—exchange pumping effect on the
sloshing-ions; in our studies thus far we have
used x = 1.

The quasineutrality condition at point A can
then be invoked to find the warm-electron density:

Nea,warm - Mia,slosh ~ Nea,cold ~ Mea,hot- (13)

Note that the passing and trapped-ion densities
go to zero at point A.

Next, we employ the beta equation at point
A:

nja,slosh Einj,a * Dea,warm Tew * Mea,cold Tec

2
B
= vac,a ’ (14)
+ Mea,hot 0.8 Een 2# Ba

where Ej,; 4 i8 the sloshing-ion injection
energy. iﬂis equation may be solved for Ty
since everything else is known.

We now know everything we need to know to
check the warm-electron particle balance.
Warm-electrons are introduced by the
sloshing-ion beam, the current of which is
calculated from the sloshing-ion particle
balance and the low-energy pump beam.
Warm-electrons are also introduced when cold
(passing) electrons trap in the ellipsoidal
well. The collisional loss of electrons from an
ellipsoidal well in velocity space has been
modeled by Cohen, et al.?” Under conditions of
strong ECRH, all exiting electrons emerge as
hot-electrons with perpendicular energy 6Q,/(1
= Rgp), where Rqp is Bpla,b/Bpla,a’
under conditions of weak ECRH, some exiting
electrons emerge as cold (passing) electrons as
well (see Fig. 3).

The mathematical details of this model will
be found in Ref. 5. For now we note that when
all these entering and exiting currents are
calculated, they will not, in general, balance.
Thus, we must adjust our guess for B, until
they do. This completes the second inner loop.

Next, we check the hot-electron particle
balance. Hot-electrons are produced when ECRH
at point A boils electrons out of the top of the
ellipsoidal well there (recall this was a loss
term for the warm-electrons). Hot-electrons can
also be produced by the ECRH applied at point B,
because it convects cold (passing) electrons
upwards in perpendicular energy until they
mirror-trap (see Fig. 4). These two source
currents are balanced against the confinement
loss of electrons in a mirror well. The value
that was guessed for F,. is adjusted until the
terms do, indeed, balance. This completes the
middle loop.

We may think of the middle and inner loops
as an attempt to solve two equations, the warm-
and hot-electron particle balance equations, in
two unknowns, Fo. and B4. It turns out that
this solution is not easy. Fixed-point
iterations definitely do not work here. The
existence of multiple solutions, which have been
found under certain circumstances, foils
bisection or regula falsi techniques (neither of
which are well suited to two-dimensional root
finding anyway). Newton step techniques can run
into trouble because in the domain, 0 < Foc<1
and 0< 8,<1, there may be points for which
the balance equations’ terms are undefined. For
example, if B, gets too big, Eq. (9) can yield
a negative value for Egn; if B, gets too
small, on the other hand, Eq. (14) can yield a
negative value for Tey. At present, the code
scans the entire domain looking for a solution
at each point, and, if there are multiple
solutions, selects the solution with the
smallest B, at the smallest Fgc. This



process is time—consuming, but it seems to
work. Work to find a speedy, reliable algorithm
to solve these equations is ongoing.

The central-cell ion and electron particle
and energy balance equations are next solved for
the central-cell auxiliary ion-fueling current,
the auxiliary cold-electron current (described
in Ref. 1), and the fractions of trapped ions
pumped by the low-, medium—, and high-energy
pump beams. Only two of the pump-beam fractions
are independent (the third is determined by the
condition that all three should add to omne), so
this gives us four equations in four unknowns.
These are linear equations (for this choice of
unknowns) and so they can be easily solved. We
then adjust our initial guesses for @ and
@, until the pump-beam fractions come out to
be what we want them to be., This adjustment is
done by means of Powell's technique for finding
roots (a compromise between a Newton step and a
steepest descent step), and the Jacobian is
updated at each step according to Broyden's
method.8 This completes the outer loop.

The neutral beam current input to the plug
is calculated from the plug ion-particle
balance, and from this we can find the plug
injection power. The neutral-beam current input
to the barrier (sloshing-ion beam) is found from
the sloshing-ion particle balance, and the
sloshing-ion beam injection power is
calculated. A trapped-ion particle balance, in
conjunction with the three pump-beam fractions,
fixes the currents of each of the three beams,
and thus determines the injected pumping power.
The ECRH power inputs at A and B are calculated
from the warm- and hot-electron energy balances,
respectively.

It should be borne in mind that all of the
above is done for each flux tube separately, and
the results are integrated over the radial
profile to get the total input power. This
total input power is then divided into the
fusion power to get the plasma Q. We also note
that the code, as it is currently structured,
tells us what current and ECRH radial-deposition
profiles are necessary to achieve the input beta
profiles.

Status of Code

We plan to use the code to quantify a
comparison study between the axisymmetric and
A-cell barrier configurations of tandem mirror
reactors. Though the former may achieve higher
central-cell beta values, it may necessitate
higher pumping power than the A-cell design
because the latter's potential rise,AQ&c,
serves to attenuate the number of passing ions
that enter the barrier region.

Numerical results in the form of test cases
and/or parametric studies are not yet
available. The code's inner and middle loops

have converged successfully, but not in
conjunction with a fully physically-consistent
solution to its outer loop. It is not yet clear
whether this failure to converge is due to
algorithmic difficulties, to problems with the
physics model, or to inconsistencies in the
input data used thus far.
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